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Abstract  Research and elaboration of the systems for 
conversion of renewable energy sources (RSE) as a 
research objective present great interest and 
importance. Hydraulic energy currently is one of the 
most used, cheap and clean renewable energy sources. 
A more efficient use of hydraulic energy, in terms of 
environmental and social impacts, is the conversion of 
kinetic energy of running river water without dams’ 
construction. A new design and functional concept of a 
hydraulic flow turbine with vertical axis and 
individualized orientation of the hydrodynamic blades 
was proposed and elaborated. Using a high order panel 
method the potential flow analysis is performed in 
order to compute the hydrodynamic lift and moment 
coefficients. The drag coefficient is computed through a 
boundary layer analysis. Laminar boundary layer 
analysis utilizes Falkner-Skan semi-empirical relations. 
Transition from laminar boundary layer to turbulent 
boundary layer is predicted through Michael’s 
criterion. The turbulent boundary layer parameters are 
computed using the Head’s model and the drag 
coefficient is provided by Squire-Young formula. In 
order to maximize the flowing water energy conversion 
efficiency the blade hydrodynamic profile parameters 
and blade orientation with respect to flow direction at 
each position during the turbine rotation are optimized. 
The total torque, the forces acting on the blades and the 
performance of 3-, 4- and 5-blades rotor multi-blade 
hydrodynamic rotor were analyzed. 

Keywords: renewable energy sources, hydraulic flow 
turbine, conversion of hydraulic energy. 

1. INTRODUCTION 

The inevitable increase of global energy consumption 
and the risk of a major environmental impact and 
climate change as a result of burning fossil fuels open 
wide prospects for the exploitation of renewable 
energies. Hydropower, as a renewable energy source, 
will have an important role in the future. International 
research confirms that the emission of greenhouse 
gases is substantially lower in the case of hydropower 
compared to that generated by burning fossil fuels. 
From the economical point of view, the utilisation of 
half of the feasible potential can reduce the emission 
of greenhouse gases by about 13%; also it can 
substantially reduce emissions of sulphur dioxide 
(main cause of acid rains) and nitrogen oxides. 

Hydraulic energy is the oldest form of renewable 
energy used by man and has become one of the most 
currently used renewable energy sources, being also 
one of the best, cheap and clean energy sources. 
Hydraulic energy as a renewable energy source can be 
captured in two extra power forms:  

– potential energy (of the natural water fall); 
– kinetic energy (of the water stream running). 

Global hydro power energy today is about 715000 
MW, or about 19% of global electricity (16% in 2003). 
However, macro hydro power is not a major option for 
future energy production for various reasons, such as 
the environmental one.  
Construction of dams on rivers created major 
environmental and social problems. Development of 
huge artificial water reservoirs by damming the Earth's 
major arteries has led to climate and wildlife change in 
the region, to creating some generating sources of 
greenhouse gases. 
A more efficient use of hydraulic energy, in terms of 
environmental and social impacts, is the conversion of 
kinetic energy of running river water without dams’ 
construction. The kinetic energy of water is available 
continuously. It does not create noise pollution of the 
environment and doesn’t affect aquatic fauna. In the 
case of small size flow turbines the negative 
environmental impacts associated with large 
hydroelectric power stations are also eliminated. 
These mini-hydroelectric power stations can meet 
energy needs of consumers, particularly in remote 
rural areas. 

2. FLOW TURBINE WITH HYDRODYNAMIC 
EFFECT 

The stream velocity of 1m/s represents an energy 
density of 500W/m2 of the flow passage. Still, only 
part of this energy can be extracted and converted 
into useful electrical or mechanical energy, 
depending on the type of rotor and blades. Velocity is 
important, in particular, since its doubling leads to an 
8 times increase of the energy density. 
The analysis of the constructive diversion of turbines, 
proposed previously, does not satisfy completely 
from the point of view of water kinetic energy 
conversion efficiency. 

Annals of the University of Craiova, Electrical Engineering series, No. 35, 2011; ISSN 1842-4805_________________________________________________________________________________________________________________

83



Based on the computational analysis of the 
hydrodynamic effects a hydraulic turbine with 
vertical axis and hydrofoils with NACA profiles is 
proposed. The blade orientation with respect to flow 
direction should be optimized at each position during 
the turbine rotation.   
In order to maximize the flowing water energy 
conversion efficiency, the selection of the optimal 
blades hydrodynamic profile is important in flow 
turbines. Also, conversion increase is achieved by 
ensuring the optimal position of blades with respect 
to flow direction at various phases of rotor revolution  

 
Figure 1: Conceptual scheme of vertical axis turbine 

with hydrodynamic blades. 
 
(see fig. 1), employing an orientation mechanism of 
blades. Thus, practically all blades (even those blades 
which move against the water stream) participate in 
the generation of the summary torque. Moving in the 
water flow direction, for torque generation the blades 
use both the hydrodynamic forces and the water 
pressure exercised on the blade surfaces. Moving 
against the water currents direction the blades use 
only the hydrodynamic lift force for torque 
generation. Due to the fact that the relative velocity 
of blades concerning the water currents is twice 
bigger, practically, at their motion against the water 
currents, the hydrodynamic lift force is relatively big, 
and the generated torque is commensurable to the one 
generated by the water pressure. This effect makes 
the basis of all patented technical solutions. 

3. THEORETICAL JUSTIFICATION OF THE 
HYDRODYNAMIC PROFILE SELECTION OF 
THE BLADE 

Consider the symmetrical profile of the blade placed 
in a uniform water stream with velocity V  (fig. 2). 
In the fixing point O' of the symmetrical blade with 
lever OO  let consider three coordinate systems, 
namely: the O'xy system with axis O'y oriented in the 
direction of the velocity vector V , and axis O'x 
normal to this direction; the O'x y  system with axis 
O'y  oriented along the lever direction OO', and axis 
O'x  normal to this direction, and finally the O'x''y'' 

system with axis O'x'' oriented along the profile’s 
chord toward the trailing edge and axis O'y'' normal 
to this direction . Points A and B correspond to the 
trailing and the leading edges, respectively. The 
angle of attack  is the angle between the profile’s 
chord AB and the direction of the velocity vector V , 
and the positioning angle  is the angle formed by the 
velocity vector direction and lever OO'. 
The hydrodynamic force F  has its components in 
directions O'x and O'y, named the lift and drag 
forces, respectively given by: 

 

 
Figure 2: Hydrodynamic profile blade. 

 21 ,
2L L pF C V S  (1) 

 21 ,
2D D pF C V S  (2) 

where  is the fluid density, V  is the flow velocity, 
Sp=ch (c is the length of chord AB, and h is the blade 
height) represents the lateral surface area of the 
blade, and CL and CD are dimensionless 
hydrodynamic coefficients, called the lift coefficient 
and drag coefficient.  The hydrodynamic coefficients 
CL and CD are functions of the angle of attack , the 
Reynolds number Re and the hydrodynamic shape of 
the blade profile. The components of the 
hydrodynamic force in the coordinate system O'x y  
are 

 
sin cos ,

cos sin .
x L D

y L D

F F F
F F F

 (3) 

The torque developed by blade i at the rotor spindle 
OO  is  
 , ,r i xT F OO  (4) 

and the total torque developed by all blades is  

 
1

,
Npal

r ri
i

T T  (5) 

where Npal is the number of rotor blades.  
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Generally, the hydrodynamic force does not have 
application point in the origin of the blade axes 
system O  so that it produces a resultant moment. The 
produced moment is determined with respect to a 
certain reference point. As a reference point there is 
considered the point located at distance ¼ of the 
chord length measured from the leading edge B. The 
moment, called the pitching moment, is computed 
according to formula  

 21 ,
2 M pM C V cS  (6)  

where CM  is the hydrodynamic moment coefficient.  
The shape of the hydrodynamic profile is chosen 
from the library of NACA 4 digits aerodynamic 
profiles. The standard NACA 4 digit profiles are 
characterized by three shape parameters measured in 
percents of the chord’s length: maximum value of 
camber Cmax, location of the maximum camber xC,max 
and maximum thickness Gmax. The profile 
coordinates are obtained by combining the camber 
line and the distribution of thickness [1]. Since the 
considered blades will have a symmetric shape, the 
camber is null (Cmax=0, xC,max=0) and the camber line 
will coincide with x-axis. 
 
3.1. Determination of hydrodynamic coefficients 
CL and CM  

For simplicity, the profile chord length is considered 
unitary. Initially, the fluid is considered 
incompressible and inviscid, and its flow–plane and 
potential [2,3]. In the case of an incompressible plane 
potential flow the velocity components ,V u v in 
point P(x,y) are given by the relations: 

 ( , ) ,u x y
x

( , ) ,v x y
y

 (7) 

where potential  is obtained by superposition of a 
uniform velocity flow and a distribution of sources 
and vortexes on the profile C. Thus, the potential is 

 ,S V  (8) 

where the uniform flow potential is given by 

 cos sin ,V x V y  (9) 

the potential of the source distribution with strength 
q(s) is 

 ( ) ln( ) ,
2S

C

q s r ds  (10) 

and the potential of vortex distribution  with strength 
(s) is given by formula: 

 ( ) .
2V

C

s ds  (11) 

In relations (10, 11) variable s represents the arc 
length along profile C, and (r, ) are the polar 

coordinates of point P'(x,y) relative to the point on 
the contour corresponding to arc length s (see fig.3). 
 
 
 
 

 
Figure 3:  Potential two-dimensional flow 

around profile .C  
 
Therefore the potential in point P'(x,y) is computed 
as follows 

 
( ') cos sin

( ) ( )        ln( ) .
2 2C C

P V x V y
q s sr ds ds

 (12)  

In order to compute the plane flow potential  the 
collocation method is used, that is: profile C is 
approximated by a closed polygonal line 

 
1

,
N

j
j

C E  

with sides Ej having their vertices Pj and Pj+1 on C. 
The vertices Pj are having a higher density near the 
leading and trailing edges. This is achieved by 
choosing Chebyshev points as their x-coordinates. 
Numbering of the vertices starts from the trailing 
edge on the lower side in the direction of leading 
edge, passing further to the upper side (fig. 4).  

  
 
 
 
 

 Figure 4: Discretization of profile .C  

It is further assumed that the strength of vortexes (s) 
distributed on profile C is constant on the boundary 
having value , and the strength of sources q(s) 
distributed on the profile is piecewise constant on 
each boundary element Ej with value qj, j=1,…,N. 
Breaking the integrals in equation (12) along each 
panel gives: 

 
1

cos sin

    ln( )
2 2

j

N
j

j E

V x V y
q

r ds  (13) 

with unknowns  and ,  1, , .jq j N  
Consider now the boundary element Ej with vertices 
Pj and Pj+1. The unit normal and tangent vectors of 
the element Ej are given by: 

 
( sin , cos ),

(cos ,sin ),
j j j

j j j

n
  (14) 
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where 1 1sin  and cos .j j j j
j j

j j

y y x x
L L

  

The unknowns  and qj from relation (13) are 
determined from the boundary and Kutta conditions. 
The boundary condition is the flow tangency 
condition along the profile: 

 0,V n  (15) 

where n  is normal to the profile. Imposing condition 
(15) on collocation points ,jj jM x y  chosen to be 

the midpoints of Ej and denoting the velocity 
components in Mj by uj and vj, respectively, provides 
N  algebraic relations: 

 sin cos 0,  j 1, ,j j j ju v N  (16) 

Relations (16) are used to determine the N+1 
unknowns:  and qj, j=1,…,N. The last necessary 
relation is provided by Kutta condition: 

 
1

,
NE E

V V  (17) 

where  denotes the unit tangent vector of the 
boundary element. Kutta condition (17) becomes:    

 1 1 1 1cos sin cos sin .N N N Nu v u v  (18) 

The velocity components in point iM  are determined 
by the contributions of velocities induced by the 
distribution of sources and vortexes on each 
boundary element Ej: 

 1 1

1 1

cos ,

sin ,

N N
s v

i ij j ij
j j

N N
s v

i ij j ij
j j

u V u q u

v V v q v
 (19) 

where , , ,s s v v
ij ij ij iju v u v  are  the influence coefficients.  

Let ij, i j, be the angle between j iP M and 1,i jM P and 
set ii= . Let ( , )ij i jr dist M P  and define  

, 1 ,  , 1, , .i j
ij

ij

r
D i j N

r
 It can be shown that the 

influence coefficients can be computed by the 
following formulas: 

 

1 ln cos sin ,
2
1 ln sin cos ,

2
1 ln sin cos ,

2
1 ln cos sin ,

2

s
ij ij j ij j

s
ij ij j ij j

v
ij ij j ij j

v
ij ij j ij j

u D

v D

u D

v D

 (20) 

Substitute equations (19) and (20) in conditions (16) 
and (18). After some algebraic manipulations a linear 
system with N+1 equations and N+1 unknowns  and 
qj, j=1,…,N is  obtained: 

 

11

22
1

, 1

1

.
N

ij i j

NN

N

bq
bq

A
bq

b

 (21) 

Coefficients Aij and bi are given by formulas:  

 1 sin ln cos ,   , 1, , ,
2ij ij ij ij ijA D i j N   

 , 1
1

1 cos ln sin ,   1, , ,
2

N

i N ij ij ij ij
j

A D i N   

 1, 1, 1 ,

1 1 ,

1 sin sin
2

                 cos ln cos ln ,

N j j j N j Nj

j j Nj N j

A

D D
  

 
1, 1 1 1 ,

1

1 1

1 sin ln sin ln
2

                         cos cos ,

N

N N j j Nj N j
j

j j Nj Nj

A D D
           

 
1 1

sin ,  1, , ,
cos( ) sin( )

i i

N N

b V i N
b V V

 

with .ij i j  
The solution of linear system (21) will provide the 
values of  and qj, j=1,…,N, using which  the 
tangential components of the velocity in collocation 
points Mi, i=1,…,N can be computed. The tangential 
component of the velocity at point Mi is 

 cos sin .i i i i iu u v  

Substitute (19) in the above relation to obtain: 

 
1 1

1 1

cos cos

  sin sin .

N N
s v

i ij j ij i
j j

N N
s v
ij j ij i

j i

u V u q u

V v q v

 

Using relations (20) and algebraic manipulations 
obtain the following formulas: 

 
1

cos

1    sin cos ln
2

                 sin ln cos .

i i

N

i ij ij ij ij
j

ij ij ij ij

u V

q D

D

 (22) 

The local pressure coefficient can be rewritten as 

 
2

21 .p
VC
V
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Therefore, the local pressure coefficient on the 
discretized profile can be computed from the relation 

 
2

, 1 ,i
p i

u
C

V
 (23) 

where iu are given by (22). The hydrodynamic forces 
acting on the boundary element Ej are given by: 

 
, 1

, 1

,

 ,

xj p j j j

yj p j j j

f C y y

f C x x
 (24) 

and the pitching moment coefficient is calculated by: 

 1 1
, .

2 2 4
j j j j

m j xj yj

y y x x cc f f  (25)  

The total force is the sum of contributions of each 
boundary element:  

 
1 1

,  ,
N N

x xj y yj
j j

F f F f  (26) 

Lift and moment coefficients are given by: 

 sin cos ,L x yC F F  (27) 

 ,
1

.
N

M m j
j

C c  (28) 

 
3.2. Determination of hydrodynamic drag 
coefficient CD 

The first phase, described in previous section, 
consists in the computation of the velocity 
distribution in the potential flow around the profile. 
The next phase consists in the computation of 
boundary layer parameters corresponding to the 
velocity distribution obtained in the first phase. In its 
turn, the boundary layer phase is divided into two 
sub-steps: laminar boundary layer and turbulent 
boundary layer [4-6]. 
The boundary layer starts at the stagnation point (the 
point on the profile’s contour with zero velocity) and 
follows the profile along the upper or lower surface 
in the direction of trailing edge. As soon as the 
stagnation point 1x  was determined, the numbering 
of vertices starts in the direction of trailing edge 
(fig.5).  

 
 
 
 

Figure 5: Profile discretization for boundary layer  
analysis. 

The computation of laminar boundary layer 
parameters is based on the integral momentum and 

kinetic energy equations. The boundary layer 
thickness is defined as the distance from the profile at 
which the flow velocity differs by 1% from the 
velocity corresponding to the potential flow. Prandtl 
laminar boundary layer equations are derived from 
the steady incompressible Navier-Stokes equations: 

 
2

2

0,

,

0.

u v
x y

u v p uu v
x y x y

p
y

 (29) 

Here, x represents the measured distance along the 
contour from the stagnation point, and y is the 
measured distance in the normal to the surface 
direction (fig. 6). 
 
                                             
 
 
 
                

Figure 6: Transition from laminar to turbulent 
boundary layer. 

Introduce the displacement thickness *:  

 *

0

1  ,u dy
V

 (30) 

where V represents the velocity of the boundary layer 
exterior part in the considered point, and u is the 
tangential velocity in this point. Similarly, the 
momentum thickness  is defined by 

 
0

1  ,u u dy
V V

 (31) 

and the kinetic energy thickness * is given by 

 
2

*
2

0

1 .u u dy
VV

 (32) 

By integrating equations (29) and using relations 
(30 32), the Von Karman integral-differential 
momentum equation is obtained 

 
* 12 ,

2 f
d dV C
dx V dx

 (33) 

where Cf denotes the local friction coefficient on the 
profile surface. Introduce the shape parameter  

 
*

.H  (34) 

Then, equation (33) can be rewritten as follows: 

Annals of the University of Craiova, Electrical Engineering series, No. 35, 2011; ISSN 1842-4805_________________________________________________________________________________________________________________

87



 12 .
2 f

d dVH C
dx V dx

 (35) 

On the other side, multiply equation (33) by u, and 
integrate it in order to obtain: 

 
* *

3 2 ,d
d dV C
dx V dx

 (36) 

where Cd is the dissipation coefficient. Introduce the 
second shape parameter: 

 
*

* .H  (37) 

Subtract equation (35) from equation (36) to get: 

 
*

* *11 2 .
2d f

dH dVH H C H C
dx V dx

 (38) 

The system of equations (35) and (38) is not 
sufficient to determine all unknowns. The additional 
relations are based on Falkner-Skan semi-empirical 
relations [5]. Assume the following correlation 
between H* and H: 

 

2

*
2

( 4)0.076 1.515,  if 4,

( 4)0.04 1.515,  otherwise.

H H
HH

H
H

 (39) 

Also let Re Re V and assume that 

 1 2*

1 Re ( ),  2Re ( ),
2

d
f

C
C F H F H

H
 

where 
2

21

2

7.4
0.01977 0.067,   if 7.4,

1
( )

7.4
0.022 0.067,  otherwise,

6

H
H

H
F H

H

H

 (40) 

11/ 2

2
2

2

0.00205 4 0.207,  if 4,
( ) 0.003 4

0.207,  otherwise.
1 0.02 4

H H
F H H

H

 (41) 

Multiply equation (35) by Re  and let 2Re . 
The terms are re-arranged to obtain: 

 1
1 2 ( ).
2

d dVV H F H
dx dx

 (42) 

Multiply equation (38) by *Re H  and re-arrange 
terms to get: 

 
*

2 1
(ln ) 1 ( ) ( ).d H dH dVV H F H F H
dH dx dx

 (43) 

Introduce the following notations: 

 

*

3

4 2 1

(ln ),  ( ) ,  

( ) ( ) ( ).

dV d HA x F H
dx dH

F H F H F H
 

Then equations (42) and (43) are rewritten as follows 

 
1

3 4

1 ( ) 2 ( ) ( ),
2

( ) ( ) 1 ( ) ( ).

dV x H A x F H
dx

dHV x F H H A x F H
dx

 (44) 

The initial values are chosen to ensure that 

 0 0 and 0 0.dw dH
dx dx

 

Therefore, H(0) is the solution of the following 
equation: 

 4

1

( )1 .
2 ( )

F HH
H F H

 

Solving the above equation provides us the 
root (0) 2.24.H  Consequently, 

 1( (0))
0 .

(0)(2 (0))
F H

A H
 

The initial conditions become 

 
1(2.24)

0 ,
4.24 (0)

0 2.24.

Fw
A

H
 (45) 

The system of nonlinear ODE (44) with initial 
conditions (45) is solved by the Backward Euler 
method, but in order to avoid the implicit iterations at 
the transition from step j to step j+1 the functions F1 
and F4 are linearized in the neighborhood of Hj, while 
F3 takes the value F3(Hj).  Thus, there is obtained a 
system of two bilinear equations with the unknowns 
Hj+1 and 1j : 

 
1 1 1 1

1 1 1 1

2 2 2 2
1 1 1 1

,

,
j j j j j j j j

j j j j j j j j

A B H C H D

A B H C H D
 (46) 

where  

 

11
1

1
1

1
1

11
1 1

3 12
1

2 ,  
2

,  

,

0,
2

( )
,  

j
j j

j j

j j

j
j j j j j

j j j
j j

V x
A A x

x
B A x

C F x

V x
D F x F x H

x
F x H V x

A A x
x

 

Annals of the University of Craiova, Electrical Engineering series, No. 35, 2011; ISSN 1842-4805_________________________________________________________________________________________________________________

88



3 12
1

2
4

1
4 4

( )
,

,  

.

j j
j j

j j

j j j j

F x V x
B A x

x
C F x

D F x F x H

 

This method is iterated till either the transition from 
the laminar layer to the turbulent layer is predicted 
(transition point xtr, fig. 6) or till the trailing edge TE 
is reached. 
In order to locate the transition from laminar 
boundary layer to turbulent boundary layer the 
Michel criterion is being used [7]. Let Re Rex Vx  
and  

 0.46
max

22.4Re 1.174 1 Re .
Re x

x

 (47) 

Then, transition takes place if maxRe Re .  
Transition point is the root of the linear interpolation 
of maxRe ( ) Re ( ).x x  
To analyze the turbulent boundary layer introduce the 
mean values and fluctuations: 

 
0

0

1( , ) lim ( , , ) ,
t T

T
t

q x y q x y t dt
T

 (48) 

 ( , , ) ( , , ) ( , ).q x y t q x y t q x y  (49) 

The equations of the turbulent boundary layer are 
obtained from the Navier-Stokes equations: 

 

2

0,

,

.

u v
x y

u v p uu v u v
x y x y y

p v v
y y y

 (50) 

Similarly to the case of laminar boundary layer, the 
Von Karman integral equations are obtained. The 
computations of the turbulent boundary layer 
parameters are done by applying the Head’s model 
[6]. Consider the flow volume in the boundary layer 
at an arbitrary point x: 

 
( )

0

( ) .
x

Q x udy   

Then the displacement thickness is given by: 

 * .Q
V

  

Introduce the entrainment velocity: 

 ,dQE
dx

  

that can be rewritten as 

 1 ,dE V H
dx

  

where 

 
*

1 .H  

According to the Head’s model the dimensionless 
velocity E/V depends only on H1, and H1, in its turn, 
depends only on H. Cebeci and Bradshow [5] have 
considered the empirical relations 

 0.6169
10.0306( 3)E H

V
 (51) 

And consequently 

 
1.287

1 3.064

0.8234( 1.1) 3.3,    1.6,
1.5501( 0.6778) 3.3,    otherwise.

H H
H

H
(52) 

Finally, the last equation to determine the unknowns 
1, ,H H and fC  is the Ludwieg-Tillman wall friction 

law: 

 0.678 0.268

0.246 .
10 Ref HC  (53) 

Combine the Von Karman integral equation and the 
relations (51) (53) to obtain the following ODE 
system: 

 ( , ),dY g Y x
dx

 (54) 

where 1 ,TY H and 

 

1

1 1
0.6169

1

2 1
2

( , ) .0.0306
3

f

H dV C
V dx

g Y x H HdV d
V dx dx H

  

The initial values are the final values supplied by the 
laminar boundary layer step. The numerical 
integration of system (54) is done by Runge-Kutta 
method of order 2, namely: 

 

*

*
1

( , ),

1 1( , ) ( , ) .
2 2

j j j j

j j j j j j

Y Y h g Y x

Y Y h g Y x g Y x
  

The calculation is done either till the trailing edge is 
reached or till the separation of the turbulent layer 
occurs. 
Squire-Young formula [8] is applied to compute the 
drag coefficient CD:  

 , ,2 | | ,
TE upper TE lowerD x C x CC V V  (55) 

where | 5 2.
TExH  
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3.3. Selection of the optimal hydrodynamic profile 
of blades 
The optimization of the performance of the turbine 
with hydrodynamic blades demands an optimal 
hydrodynamic profile of the blade. The numerical 
methods, described previously, are used to compute 
the hydrodynamic coefficients ,L refC  and ,D refC  for the 
symmetrical profiles selected from the NACA library 
of aerodynamic profiles with a reference chord length 
cref=1m. Fig. 7 shows the hydrodynamic lift ,L refC  and 
drag ,D refC  coefficients. Taking into account the data 
from Fig. 7, the NACA 0016 hydrodynamic profile is 
being selected as the reference profile.  
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Figure 7: Hydrodynamic lift LC  and drag DC  

coefficients versus the angle of attack for NACA 0012, 
0016, 63018 and 67015 profiles. 

 
4. THE TORQUE AND THE FORCES ACTING 
ON THE MULTI-BLADE HYDRAULIC 
TURBINE  

The numerical methods, described previously, are used 
to compute the hydrodynamic coefficients 
corresponding to NACA 0016 profile with the chord 
length 1 refc m : , ,,L ref M refC C and ,D refC  by formulas 
(27), (28) and (55). The coefficients corresponding to 
the profile with the chord length 1.3 m are calculated 
from the relations: 

 
,

2
,

,

1.3 ,

(1.3) ,

1.3 .

L L ref

M M ref

D D ref

C C

C C

C C

 (56) 

The working angle of attack is selected to be 18o . 
During a full revolution around the rotor’s axis the 
blade changes its attack angle depending on its 
position (fig. 8). Thus, in sector I the angle of attack 
(angle formed by the blade’s chord and water flow 
direction) is 18 ; in sector II the angle of attack shifts 

from 18  up to -18 , but the blade does not contribute 
to the total torque developed at the rotor shaft. In this 
sector, extended up to approximately 60 , the blade is 
carried freely by the water flow and its re-positioning 
ends with an angle of attack of -18  at the end of sector 
III. The angle of attack is -18  in sector III. In sectors 
IV-VI the hydrodynamic effect is minimal and the 
blade has to be re-positioned from angle -18  to angle 
18. In order to use the kinetic energy in the sectors IV-
VI it is proposed to re-position the blade from -18  to 
90  in sector IV; in sector V the blade remains under 
an angle of 90 , and in sector VI the angle of attack 
returns to 18 . Knowing the values of the 
hydrodynamic coefficients CL  and CD , the lift force 

LF  and drag force DF  are computed using relations (1) 
and (2), and relation (3) supplies the normal and 
tangential components of the hydrodynamic force. 
  

 
Figure 8: Blade position and working areas. 

The magnitude of the hydrodynamic force F acting on 
the blade, and its tangential and normal components 

xF and yF  versus the positioning angle are presented 
in fig. 9. The following constructive parameters of the 
rotor were considered: rotor radius 2R m , height of 
the submersible blade 1.4H m , blade chord length 

1.3c m , main angle of attack 18o , number of 
blades 5palN .  
Fig. 10 shows the torque ,r iT  developed by a single 
blade versus the positioning angle; the torque is 
computed by formula (4). Fig. 11 shows the total 
torque at the rotor shaft rT  developed by all blades 
versus the positioning angle. The total torque is given 
by formula (5). Fig. 12 shows the total torque rT  
versus the positioning angle for three water flow 
velocities V : 1 m/s, 1.3 m/s and 1.6 m/s.  

Annals of the University of Craiova, Electrical Engineering series, No. 35, 2011; ISSN 1842-4805_________________________________________________________________________________________________________________

90



0 30 60 90 120 150 180 210 240 270 300 330 360
-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

3500

4000
Forces acting on the blade, Profile: NACA 0016

Positioning angle, (Deg)

Fo
rc

es
, (

N
)

 

 

Profile: NACA 0016

Flow velocity = 1 m/s

Angle of attack = 18 Deg

Rotor radius = 2 m

Number of blades = 5

Blade height = 1.4 m

Blade length = 1.3 m

Magnitude of the force
Tangential component
Normal component

 
Figure 9: Magnitude, tangential component and 

normal component of the hydrodynamic force of a 
rotor blade versus the positioning angle. 
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Figure 10: Torque ,r iT  developed by the rotor blade 

versus the positioning angle. 
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Figure 11: Total torque rT  developed by 5 blades at 

rotor shaft versus the positioning angle.  

The graph of the moment coefficient ,M refC  versus the 
angle of attack  is shown in fig. 14. 

0 30 60 90 120 150 180 210 240 270 300 330 360
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Positioning angle, (Deg)

To
rq

ue
, (

N
 m

)

Total torque at different flow velocities

 

 

1 m/s
1.3 m/s
1.6 m/s

 
Figure 12: Total torque rT  at rotor shaft versus the 
positioning angle for various water flow velocities. 

 
Figure 13: Moment coefficient ,M refC  versus the angle 

of attack for NACA 0016 profile.  

Taking into account the fact that the hydrodynamic 
force is not applied in the blade fixing point O  (see 
fig. 14), this force produces the so-called pitching 
moment. This moment is determined with respect to 
the reference point P situated at ¼ distance of the 
chord from the leading edge B.  

  
 

Figure 14: Location of the blade fixing point. 

For the angle of attack 18o  the moment coefficient 
, 0.026M refC . Thus, from relation (56) results that 

CM = 0.0439. The moment with respect to the 
reference point P is  

 21 39.92 ,
2 M pM C V cS N m   

where 1 / ,  1.3  and 1.4 .V m s c m H m  In O x y  
coordinate system, the components of hydrodynamic 
force are given by relation (3). Applying the 
previously obtained values LF and DF  gives:  
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 1601.2 ,  413.8 .x yF N F N    

Then 0.0249 25 .xO P M F m mm  
In order to ensure the stability of the blade motion, the 
fixing point W should be selected such that 
25 mm O W H , where min maxH H H . Values 
Hmin and Hmax are chosen in order to ensure that the 
friction force in the kinematical couples of the 
orientation mechanism is minimal. 
To determine the optimal working angle of attack it is 
necessary to compute the value of the torque 
developed by one blade and the total torque for several 
values of the angle of attack, namely: 

15 ,  17 ,  18 ,  20 ,o o o o  (see fig. 15 16). In this 
context the angle of attack for the blade with 
hydrodynamic profile NACA 0016 was chosen 

18 .o
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Figure 15: Torque ,r iT developed by one blade versus 

the positioning angle. 
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Figure 16: Total torque rT  developed by 5 blades 

versus the positioning angle. 

Also, the performance of 3-, 4- and 5-blades rotor was 
analyzed. The total moment developed by the rotor 
shaft was computed and the results are presented in 
fig. 17. 
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Figure 17: Total torque rT  developed at the 3-, 4- and 

5-blade rotor shaft versus the positioning angle. 

 

4. CONCLUSIONS 

The hydraulic turbine with 5 hydrodynamic profile 
blades assures conversion of 49.5% of the energetic 
potential of water stream with velocity 1.3 m/s. The 
optimal orientation of the blades with respect to water 
stream direction (enabled by a guidance mechanism) 
assures participation of all blades (even those moving 
upstream) in generating the torque at the rotor shaft. 
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