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Abstract - The paper presents two optimization methods 
based on the concept of design of experiments: the method 
by zooms and the method by slidings of designs. Two appli-
cation variants are presented for each of them. One of the 
variants only requires access to the values of the objective 
function at different points in the feasible domain, grouped 
in designs of experiments, arranged successively, towards 
the most convenient values. The other variant uses the same 
technique, but the advance of the designs towards the opti-
mal value is based on the information provided by second-
order polynomial models that approximate the objective 
function on each design, which facilitates the convergence 
speed of the algorithm. The methods under discussion lend 
themselves very well to numerical simulations using the 
finite element method that can provide the values of the 
objective function at any point in the feasible domain that 
corresponds to a unique configuration of the simulated de-
vice. The paper presents a comparative study of the applica-
tion of these methods in the two variants, on a 2-D numeri-
cal model of an electromagnetic device. Both in the case of 
the method by zooms and in the case of the method by 
slidings of designs, the results highlight the simplicity of the 
first application variant but also the high speed of conver-
gence of the second one, especially for the method by zooms. 

Cuvinte cheie: optimizare, proiectarea experimentelor, metoda 
elementului finit bidimensională. 

Keywords: optimization, design of experiments, two-dimen-
sional finite element method. 

I. INTRODUCTION 

Optimization methods based on numerical simulations 
are very effective tools for improving the performance of 
electromagnetic devices. Therefore, the technique of 
design of experiments (DOE) [1]-[2] becomes 
indispensable in solving these problems, only changing 
the nature of the experiments from "real" to "numerical" 
The fact that it is still a topical technique is proven by 
many scientific works [3]-[12]. The DOE technique can 
be applied both for the screening of devices for 
optimization and for the actual optimization through 
different algorithms. 

For example, in [3] the aim was to determine the 
influential parameters in order to optimize a double-cage 
induction motor, in [4] critical parameters were subjected 
to a detailed parametric analysis to select some of them for 
optimization of  switched reluctance motor for ceiling fan 
design and in [5] through Ansys and Noesis Optimus 
software based on DOE and response surface methodolo-
gy is investigated the effect of bump structures and loa-
ding conditions on the electromigration properties of sol-
der bumps in Wafer-level chip-scale packaging. 

Many works deal with actual optimization problems 
based on DOE such as [6] which presents the optimization 
of the operation of a boiler, aiming to reduce the gas-
steam ratio to increase its efficiency, or [7] where the ro-
bust design by using DOE method and driving cycles is 
proposed to optimize the brushless direct current motors. 
Genetic algorithms and DOE were employed in [8] to 
optimize the stator slot V-shaped PM geometry and the 
dimension of the rotor bar. The response surface techno-
logy combined with DOE, FEM and sequential linear pro-
gramming is applied in [9] to obtain an optimized linear 
actuator with permanent magnet for driving a needle in a 
knitting machine. 

Other works focus on multi-objective optimization such 
of [10] in which DOE is used for adjustment of the limits 
of design variables to facilitate optimization with finite 
element method (FEM) of a permanent magnet machine. 
In [11 the DOE and the Kriging model are used to imple-
ment the multi-objective optimization design of the geo-
metric parameters of linear switched reluctance motor 
with segmental mover and in [12] a combination between 
DOE and FEM was performed in order to minimize the 
permanent deflection and internal energy, taking into  
account three influential parameters. 

Some works present the results of the application of dif-
ferent variants of optimization methods based on DOE 
[13]-[17]. In [13] an optimized solution was proposed for 
the geometric form of the toroidal modular coil of a su-
perconducting magnetic energy storage device using the 
method by zooms in combination with FEM. Two geo-
metric parameters were chosen to maximize the magnetic 
energy stored in a minimal volume of superconducting 
material. A similar solution was obtained in [14] by apply-
ing the method by slidings of designs, also based on DOE. 
The method by zooms was also applied in [15] to maxi-
mize the force developed by a direct current electromag-
netic device. The optimization problem considered six 
parameters to synthesize the optimal geometric shape of 
the device. In search of a global maximum, in [16] an  
exhaustive method based on DOE was applied. 

The work [17] describes in detail the method by zooms 
in two application variants: a simpler one that only re-
quires access to the objective function values at different 
points in the feasible domain, grouped in successive ex-
periment designs, oriented towards the most convenient 
values and a more complex second one, that, additionally, 
calculates second-order polynomial models that facilitate 
the increase of the convergence speed of the algorithm. 

This paper adds to the study the method by slidings of 
designs, allowing comparisons between methods in terms 
of workload and convergence speed. 

 

____________________________________________________________________________________________________________Annals of the University of Craiova, Electrical Engineering series, No. 48, Issue 1, 2024; ISSN 1842-4805 eISSN 2971-9852

46



 
Fig. 1. Graphical illustration of the application of the optimization algorithm by zooms without model calculation [13]. 

 
Fig. 2. Graphical illustration of the application of the optimization algorithm by slidings of designs without model calculation [14]. 

A. Optimization method by zooms 
a) Variant without calculation of models 
It directly uses the objective function values in the ex-

perimental points. Experimental designs centered on 
points determined by the algorithm (origin points) are 
used, formed by points arranged diagonally, on one side 
and on the other of the origin point, at equal distance from 
it, giving to the corresponding domain a hyper-rectangular 
shape. For k factors there are 2k diagonal points relative to 
the origin. It starts with a design that covers most of the 
feasible domain. The algorithm of the variant without cal-
culation of models is the following: 

1) The first experiment is carried out in a point P0     
(Fig. 1) in the feasible domain (initial point) which is con-
sidered the first origin point;  

2) The points diagonal to the origin point are esta-
blished;  

3) A number of N = 2k experiments are performed in the 
diagonal points (full factorial design); 

4) If there is a diagonal point where the response is 
more convenient than the origin point, this point becomes 
the new origin point of the next iteration and step 2 is re-
sumed (a "zoom" operation of the same size is made 
around the found diagonal point); 

5) Otherwise, the dimensions of the initial design are 
reduced with the rates τk ≥ 1 and step 2 is resumed (usua-
lly τk = 2, or 22, or 23 etc.).  

The constraints on position can be taken into account 
when establishing diagonal points. If they are violated by 

one of the diagonal points, the dimensions of the design 
are reduced with rates τk > 1 and the algorithm is restarted. 

During the running of the algorithm it is possible that 
some points subject to analysis have already been ana-
lyzed in previous iterations (recovered points). Their 
number (Nrec) contributes to reducing the required number 
of experiments (Ntot). 

b) Variant with calculation of second-order polynomial 
models 

At each iteration, a second-order polynomial model 
Fmod for objective function F is calculated that allows de-
termining the direction of the best values, the position and 
dimensions of the next design. The matrix equation of a 
second order model is written [2]: 
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An important simplification of the equation can be ob-
tained if the model is viewed from a particular coordinate 
system (S,x1’,x2’,…,xk’), rotated and translated relative to 
the original system (O,x1,x2,…,xk) (Fig. 3a), so that only 
the terms containing  2

jx ,  j = 1, …, k are kept. 

Thus, the canonical analysis is used, which allows the 
determination of the origin and axes of the new system, as  
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                         a                                                b                                              c                                                d 
Fig. 3. Graphical illustration of the application of the optimization algorithm by zooms with calculation of second order polynomial model in case the 

optimum sought is a maximum [17]. 

                    

                                a                                                   b                                                                c                                              
Fig. 4. The optimal paths and the optimal point. 

 
well as the new form of the model, using the diagonal 
matrix Λ of the eigenvalues of B [2]: 

  MMB  (3) 

where M = matrix of eigenvectors of B. 
The origin S(x1S, …, xkS) of the new system represents 

the optimal point (minimum or maximum) of the second 
order model restricted by the dimensions of the current 
domain.  

This point can be found inside the current domain or on 
its border. Fig. 3 illustrates four possible cases for a two-
dimensional domain in which the sought optimum is a 
maximum: 

a) the model function has the same curvature as the ob-
jective function and the maximum of the model function is 
located inside the current domain (Fig. 3a).  

b) the model function has the same curvature as the ob-
jective function but the maximum of the model function is 
located outside the current domain (Fig. 3b); 

c) the model function has the opposite curvature of the 
objective function, admitting a minimum inside the       
current domain (Fig. 3c);  

d) the model function has inflection point inside the 
current domain (Fig. 3d).  

In case a, point S is identified with the maximum of the 
model function, being located inside the current domain. 
In cases b, c, d, point S coincides with the maximum of 
the model function restricted by its border, being located 
either on one of the sides (b, d) or in a corner of the       
current domain (c). 

The axes of the new system are expressed as: 

  S
T XXMX   (4) 

The equation of the model in the new system becomes:  
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The next iteration of the algorithm will use a design of 
experiments with the sides oriented according to the axes 
of the new system. 

The zoom effect is obtained by successively reducing 
the dimensions of the domains from one iteration to     
another with different percentages, depending on the signs 
of the eigenvalues λj. The reduction rate depends on the 
topology and on the variations of the objective function. 
Hyper-rectangular designs with three levels per factor (p = 
3k) are usually used. 

It is denoted by T(xT,yT) = the minimum point of the 
model, S(xS,yS) = the optimal point of the model, pr = the 
percentage reduction of the surface of the current domain 
to obtain the new domain (pr < 1), τ = the reduction rate 
of each dimension of the current domain, ζ = the reduction 
percentage of the difference between the maximum and 
the minimum of the model and ρ = the coefficient of re-
duction of the difference between the maximum and the 
minimum of the model.  

For the two-dimensional case, if all the eigenvalues λj 
have the same sign (Fig. 3a,b,c), starting from iteration i, 
the percentage pr is calculated first, then ζ, then the di-
mensions of the domain at iteration i+1, denoted by Li+1, 
Hi+1. Only in the first iteration, a value pr < 1 is first cho-
sen and then the coefficients ρ and ζ are calculated: 
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Thus, the new domain will be a hyper-rectangle that 
will circumscribe an ellipsoid with k axes and dimensions 

j , j = 1, …, k and which will have  2 · k  vertices 

with coordinates  k ,,, 21  . 

These coordinates are valid in the system formed by the 
main axes Sx1’, Sx2’, …, Sxk’ associated with the second 
order model. They can be expressed in the original axis 
system (O,x1,x2,…,xk) using the matrix relation: 

 XMXX  S  (11) 

If the eigenvalues λj have different signs, the coefficient 
τ will be calculated first using the percentage pr from the 
previous iteration, then Li+1, Hi+1: 

 pr  (12) 

ii LL 1 ,  ii HH 1 ,  iiii HLprHL   11    (13) 

The algorithm of the variant with calculation of second 
order polynomial model is the following: 

1) An origin point P0 = (x1, …, xk )
T is defined in the 

feasible domain; 
2) A design of N experiments centered in P0 is made, 

with N > p = the number of coefficients of the second-
order polynomial (in 2-D it is rectangular domain, N = 42 
> p = 6); 

3) The associated second-order polynomial model is 
calculated; 

4) Determine the optimal point S of the model on the 
current domain (the center of the new coordinate system); 

5) Determine the opposite of the optimal point T of the 
model on the current domain (the minimum point, if the 
optimum is a maximum or the maximum point, if the op-
timum is a minimum); 

6) The eigenvalues  λj of matrix B and the axes of the 
new system are determined; 

7) If all the eigenvalues λj have the same sign, first cal-
culate the percentage pr, then calculate ζ (in the first itera-
tion a value pr < 1 is chosen, then ρ and ζ are calculated). 
Otherwise, the coefficient τ is first calculated using the 
percentage pr from the previous iteration; 

8) Calculate Li+1, Hi+1; 
9) The coordinates of the vertices of the new domain 

are determined; 
10) A design of N experiments centered in S and li-

mited by the vertices calculated in step 9 is made, with        
N > p = the number of coefficients of the second-order 
polynomial (in 2-D it is rectangular domain, N = 32 > p = 
= 6) and the step 3 is repeated. 

As advantages, the method provides a modeling of the 
objective function over the entire feasible domain and 
models the neighborhood of the optimal point more and 
more finely. Instead, the optimum found is a local one, the 
algorithm is computationally expensive and quickly       
generates designs with at least one point outside the feasi-
ble domain, due to the rotation of the domains. From an 
economic point of view, there are minimal chances of 
recovering points.  

B. Optimization method by slidings of designs 
a) Variant without calculation of models 
It directly uses the objective function values in the ex-

perimental points. The algorithm uses only discrete fac-
tors; in the case of continuous factors, they are discretized 
into a finite set of values (Nvk = total number of values of 
factor k). A k-dimensional discretization network (grid) is 
defined, preferably regular, determined by some of the Nvk 
values of the k factors, which will be the support of the 
optimization algorithm, having great influence on the pre-
cision of the results. The structure and dimensions of the 
experimental designs used are established, in correlation 
with the dimensions of the feasible domain and of the dis-
cretization network. 

Two types of experimental designs centered in network 
nodes determined by the algorithm (origin points) are 
used: diagonal designs formed by nodes of the network 
diagonally arranged, on one side and the other of the 
origin point, equidistant from it, and axial designs formed 
by nodes of the network axially arranged, on one side and 
on the other of the origin point, equidistant from it. For k 
factors there are 2k diagonal points and 2k axial points 
relative to the origin point. 

The size of a design is defined by the parameter (step) s 
being the number of grid nodes traversed in a given 
direction (diagonal or axial), from the origin point to the 
points of the design (s ≥ 1). Its value is initially 
established in correlation with the Nvk numbers. It starts 
with designs of relatively small dimensions compared to 
the dimensions of the feasible domain. The algorithm of 
the variant without model calculation is the following: 

1) The first experiment is carried out in a node P0 from 
the feasible domain (initial point) which is considered the 
first origin point (Fig. 2);  

2) The points diagonal to the point of origin are 
established;  

3) N = 2k experiments are performed in the diagonal 
points (full factorial design);  

4) If there is a diagonal point where the answer is more 
convenient than the origin point, that point becomes the 
new origin point of the next iteration and step 2 is 
resumed (the current origin point slides towards the 
diagonal point); 

5) Otherwise, the axial points of the origin point are 
established; 

6) N = 2k experiments are performed in the axial points 
(full factorial design); 

7) If there is an axial point where the answer is more 
convenient than the origin point, that point becomes the 
new origin point of the next iteration and step 2 is 
resumed (the current origin point slides towards the axial 
point); 
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8) Otherwise, the current value of step s is decremented 
by 1, if this is possible, and step 2 is resumed.  

All new designs derive from the previous ones by 
slidings in diagonal or axial direction with different values 
of step s.  

The constraints on position can be taken into account 
when establishing diagonal or axial points. In case they 
are violated by one of the diagonal or axial points, the 
current value of step s is decremented by 1, if this is 
possible and the algorithm restarts. The step s allows 
controlling the speed of the algorithm, which is the speed 
of slidings the designs in the feasible domain in search of 
the optimal point. A step that is too big can increase the 
speed but it can reduce the probability of reaching the 
optimal point, so a compromise is necessary depending on 
the situation. 

b) Variant with calculation of second-order polynomial 
models 

As in the case of the method by zooms, at each iteration 
a second-order polynomial model is calculated that allows 
determining the direction of the best values, the position 
and dimensions of the next designs (1), (2).  

The slidings direction for the next iteration will be 
towards one of the design vertices / side centers, closest to 
the optimal (stationary) point of the model, on the current 
design. The designs used must comprise a number of 
experiments at least equal to the number of coefficients bk, 
i.e. N ≥ k + 1 experiments. The structure and dimensions 
of the used experimental designs are established in 
correlation with the dimensions of the feasible domain.  

The sliding strategy (Fig. 5) establishes that if D-1 type 
Doehlert design is used, after determining the optimal 
(stationary) point S of the model on the current design, the 
position of the new design is chosen, of the same size, 
having as center the vertex closest to point S. In this way, 
4 points are recovered from one iteration to another 
(economy design). 

If at one of the iterations the optimal point of the model 
S is obtained inside the current design, then the optimal 
path is determined, representing the ridge line of the 
model (Fig. 4a). Another iteration is performed and a new 
optimal path is calculated (Fig. 4b). The intersection of the 
two optimal paths can provide an acceptable solution to 
the optimization problem (Fig. 4c).  

The algorithm of the variant with model calculation is 
the following:  

1) An origin point P0 = (x1, …, xk )
T is defined in the 

feasible domain; 
2) A design of N experiments centered in P0 is made, 

with N > p = the number of coefficients of the second-
order polynomial (type D-1 Doehlert design, N = 7 > p = 
= 6); 

 

Fig. 5. Sliding strategy for two parameters [2]. 

 

3) The associated second-order polynomial model is 
calculated; 

4) Determine the optimal (stationary) point S of the 
model on the current design; 

5) Set the center of the new design at the vertex closest 
to point S; 

6) If the optimum point is not inside the current design, 
repeat step 3 for the new design; 

7) If the optimal point is inside the current design, the 
optimal path on the current design is determined; 

8) If two optimal paths have not yet been determined, 
step 3 is repeated for the new design; 

9) If two optimal paths have already been determined, 
the solution of the optimization problem is obtained by the 
intersection of the two optimal paths. 

As convergence criteria [13] can be used the error spe-
cific to the method that compares the maximum difference 
between the values of the objective function F at the last 
iteration against the same value if all previous iterations 
are taken into account: 

 [%]100[%] max
minmax

minmax 


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FF

ff
 (14) 

or the relative error of the last objective function value F(n) 

compared to the previous iteration with a different value 
F(m): 
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II. CASE STUDY 

A. The object of study 
Next, the application of the optimization method by 

zooms is presented to improve the performance of the 
direct current electromagnetic device analyzed in [18] 
(Fig. 6). For a comparative study, the simple variant of the 
method, which does not require calculation of models, 
was applied first, followed by the application of the vari-
ant that uses polynomial models of the second-order. Both 
variants combine the results of a large number of numeri-
cal simulations to find the maximum of the objective func-
tion represented by the force developed by the device at 
the air-gap δ = 1 mm. The numerical model of the device 
was obtained by 2-D simulation using the FEMM program 
[19] coupled with the LUA language [20]. The force value 
was determined in the post-processing stage using the 
Maxwell Stress Tensor method. The geometrical parame-
ters are given in Table I and the geometrical shape is 
shown in Fig. 6. The coil is supplied with voltage U = 115 
V, has resistance Rb = 2300 Ω and number of turns w = 
11500. 

TABLE I.  
GEOMETRICAL PARAMETERS OF  DC DEVICE [18] 

h (mm) 52.50 L1 (mm)  6.35 δ (mm) 1.00
h1 (mm) 7.90 L2 (mm) 6.35 hb (mm) 31.20
h2 (mm) 7.90 La1 (mm) 13.00 Lb (mm) 7.50
H (mm) 65.70 g (mm) 19.80 
L (mm) 50.90 Sb=Lb·hb (mm2) 234.00 
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Fig. 6. Geometrical shape of the electromagnetic device [18]. 

B. Formulating and solving the optimization problem 
The optimization problem [17] consists in maximizing 

the force developed by the device at the air-gap δ = 1 mm 
by varying two geometrical parameters: the ratio between 
the height and thickness of the coil (kb) and the ratio be-
tween the thicknesses of the core yokes (kmy): 

 ]25.0[],62[
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The optimization is non-linear and subject to four 
equality constraints which maintain the overall dimen-

sions of the device (core width L = ct., core height h = ct., 
total device height H = ct.) and coil section (Sb = hb·Lb = 
ct.). The optimization problem is described mathematica-
lly as follows: 

 





























0)(

0),(

0)(

0),(

),(max

:P

bbSb

mybH

bL

mybh

maxmymyminmy

maxbbminb

myb

Skg

Hkkg

Lkg

hkkg

kkk

kkk

kkF

 (17) 

where the functions gh, gL, gH, gSb depend on parameters 
kb, kmy and on other geometric parameters not detailed 
here. 

The algorithms of the two variants of the two methods 
were initialized with the point corresponding to the center 
of the feasible domain (P0), close to the point describing 
the initial geometry (Pin) (Table I, Fig. 7).  

The evolutions of the optimization algorithms are 
graphically illustrated in Figs. 7-8 and Figs. 11-12 for the 
variants without model calculation, respectively, Figs. 9-
10 and Figs. 13-14 for the variants with second-order pol-
ynomial models. The calculated values are written in Ta-
bles II-V.   

 

 
 

TABLE II.  
EVOLUTION OF THE OPTIMIZATION ALGORITHM BY ZOOMS WITHOUT CALCULATION OF MODELS [17] 

Iterations Ntot Nrec  kb kmy F 
ε 

(%) 
εF 

(%) 
Lb 

(mm) 
hb 

(mm) 
h1 

(mm) 
h2 

(mm) 

L1, L2 
(mm) 

La1 
(mm) 

0 1 - 4.000 1.250000000 22.939 - - 7.65 30.59 7.29 9.11 6.35 12.70 
1 5 1 3.000 1.625000000 24.380 100.00 6.28 8.83 26.50 7.81 12.69 5.76 11.52 
2 5 2 2.000 2.000000000 24.496 46.50 0.48 10.82 21.63 8.46 16.91 4.77 9.53 
3 5 2 3.000 2.000000000 24.818 20.15 1.32 8.83 26.50 6.84 13.67 5.76 11.52 
4 5 1 2.500 2.000000000 24.924 17.20 0.43 9.67 24.19 7.60 15.21 5.34 10.68 
5 5 3 2.500 1.953125000 24.878 12.73 -0.18 9.67 24.19 7.73 15.09 5.34 10.68 
6 5 1 2.750 1.976562500 24.898 4.31 0.08 9.22 25.37 7.27 14.37 5.56 11.13 
7 5 4 2.500 2.000000000 24.924 4.00 0.11 9.67 24.19 7.6 15.21 5.34 10.68 
8 5 2 2.500 1.988281250 24.909 3.51 -0.06 9.67 24.19 7.63 15.18 5.34 10.68 
9 5 1 2.625 1.994140625 24.915 2.63 0.02 9.44 24.78 7.42 14.80 5.45 10.91 
10 5 4 2.500 2.000000000 24.924 1.28 0.04 9.67 24.19 7.60 15.21 5.34 10.68 

TOTAL 51 21  
 
 

TABLE III.  
EVOLUTION OF THE OPTIMIZATION ALGORITHM BY ZOOMS WITH SECOND-ORDER MODELS [17] 

Iterations Ntot Nrec  kb kmy F 
ε 

(%) 
εF 

(%) 
Lb 

(mm) 
hb 

(mm) 
h1 

(mm) 
h2 

(mm) 

L1, L2 
(mm) 

La1 
(mm) 

0 1 - 4.000000 1.250000 22.939 - - 7.65 30.59 7.29 9.11 6.35 12.70 
1 16 0 3.000000 1.625000 24.380 100.00 6.28 8.83 26.50 7.81 12.69 5.76 11.52 
2 9 1 2.475191 1.856124 24.753 29.97 1.53 9.72 24.07 8.03 14.90 5.31 10.63 
3 9 1 2.510789 1.959299 24.867 8.55 0.46 9.65 24.24 7.69 15.07 5.35 10.70 
4 9 1 2.503167 1.993066 24.914 2.78 0.19 9.67 24.20 7.62 15.18 5.34 10.68 

TOTAL 44 3  
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TABLE IV.  
EVOLUTION OF THE OPTIMIZATION ALGORITHM BY SLIDINGS OF DESIGNS WITHOUT CALCULATION OF MODELS 

Iterations Ntot Nrec  kb kmy F 
ε 

(%) 
εF 

(%) 
Lb 

(mm) 
hb 

(mm) 
h1 

(mm) 
h2 

(mm) 

L1, L2 
(mm) 

La1 
(mm) 

0 1 - 4.000 1.25000 22.939 - - 7.65 30.59 7.292 9.114 6.351 12.701 
1 5 1 3.750 1.34375 23.380 100.00 1.92 7.90 29.62 7.414 9.963 6.225 12.451 
2 5 2 3.500 1.43750 23.768 66.40 1.66 8.18 28.62 7.541 10.841 6.087 12.173 
3 5 2 3.250 1.53125 24.104 45.70 1.41 8.49 27.58 7.673 11.750 5.932 11.865 
4 5 2 3.000 1.62500 24.380 32.86 1.15 8.83 26.50 7.811 12.693 5.759 11.518 
5 5 2 2.750 1.71875 24.589 23.43 0.86 9.22 25.37 7.957 13.676 5.563 11.126 
6 5 2 2.500 1.81250 24.707 14.97 0.48 9.67 24.19 8.111 14.702 5.338 10.675 
7 5 2 2.750 1.90625 24.818 16.13 0.45 9.22 25.37 7.444 14.189 5.563 11.126 
8 5 3 2.500 2.00000 24.924 11.67 0.43 9.67 24.19 7.604 15.209 5.338 10.675 

TOTAL 41 16  
 

TABLE V.  
EVOLUTION OF THE OPTIMIZATION ALGORITHM BY SLIDINGS OF DESIGNS WITH SECOND-ORDER MODELS 

Iterations Ntot Nrec  kb kmy F 
ε 

(%) 
εF 

(%) 
Lb 

(mm) 
hb 

(mm) 
h1 

(mm) 
h2 

(mm) 

L1, L2 
(mm) 

La1 
(mm) 

0 1 - 4.000 1.250 22.939 - - 7.65 30.59 7.292 9.114 6.351 12.701 
1 7 4 3.800 1.380 23.668 100.00 3.18 7.85 29.82 7.219 9.962 6.251 12.503 
2 7 4 3.600 1.510 23.740 49.26 0.31 8.06 29.02 7.162 10.814 6.144 12.288 
3 7 4 3.400 1.640 23.371 50.23 -1.56 8.30 28.21 7.12 11.674 6.027 12.054 
4 7 4 3.194 1.766 24.445 28.13 4.60 8.56 27.34 7.108 12.552 5.896 11.791 
5 7 4 3.000 1.900 24.767 23.80 1.32 8.83 26.50 7.072 13.433 5.759 11.518 
6 7 4 2.800 2.000 24.920 16.27 0.62 9.14 25.60 7.065 14.338 5.604 11.208 
7 7 4 2.664 2.000 24.954 10.63 0.14 9.37 24.97 7.272 14.759 5.489 10.978 

TOTAL 50 22  

 
Fig. 7. Two-dimensional representation of the optimization algorithm 

of the method by zooms without calculation of models [17]. 

Fig. 8. Three-dimensional representation of the optimization algo-
rithm of the method by zooms without calculation of models [17]. 

Fig. 9. Two-dimensional representation of the optimization algorithm 
of the method by zooms with second-order polynomial models [17]. 

 

Fig. 10. Three-dimensional representation of the optimization algo-
rithm of the method by zooms with second-order polyn. models [17]. 
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Fig. 11. Two-dimensional representation of the optimization algo-
rithm of the method by slidings of designs without calculation of 

models. 

Fig. 12. Three-dimensional representation of the optimization algo-
rithm of the method by slidings of designs without calculation of 

models. 

Since in the last iteration the optimal point was obtained 
on the border of the domain, the determination of the 
optimal paths would not bring a great gain because their 
intersection would take place outside the feasible domain. 
Therefore, the algorithm stops at this point. 

To facilitate the comparison between the methods and 
their application variants, Table VI compares the results 
derived from Tables II-V: the number of iterations (Nit), 
the number of experiments (simulations) actually 
performed (N = Ntot – Nrec)) and the force increase (ΔF). 

It can be seen that similar results were obtained after a 
comparable number of actually performed numerical si-
mulations. Although the second variant of the method 
requires additional complex calculations, it converges 
much faster.  

TABLE VI.  
COMPARISON BETWEEN APPLIED METHODS 

Method Variant Nit N ΔF (%) 

Zooms 
Without models 10 30 8.66

With 2-D polynomial models 4 41 8.61

Slidings of 
designs 

Without models 8 25 8.66

With 2-D polynomial models 7 28 8.78

 

Fig. 13. Two-dimensional representation of the optimization alg. of 
the method by slidings of designs with second-order polyn. models. 

Fig. 14. Three-dimensional representation of the optimization algo-
rithm of the method by slidings of designs with second-order poly-

nomial models. 

In Fig. 15 shows the optimal solution obtained by     
applying both, the method by zooms and the method by 
slidings of designs, in the variants without and with calcu-
lation of models (about the same solution) with the distri-
bution of the magnetic flux density at the air-gap δ = 1 
mm, obtained in FEMM, as a planar solution. 

III. CONCLUSIONS 

The paper presents two variants of two optimization 
method based on DOE and FEM, ones that only require 
access to the objective function values at certain points of 
the feasible domain and others that, in addition, calculates 
second order polynomial models that approximate the 
objective function on subdomains. The application on a  
2-D numerical model of an electromagnetic device al-
lowed a comparative study of them.  

The results highlighted simplicity of the application of 
the first variant and the speed of convergence of the se-
cond for both methods, obtaining similar results with a 
number of iterations reduced to less than half, but at the 
price of increasing the number of simulations. 
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Fig. 15. The optimal solution obtained by the method by zooms (both 

variants) with the magnetic flux density distribution                    
(δ = 1mm, planar FEMM solution) [17]. 

As disadvantages, the presented optimization methods 
determine a local optimum and require a numerical model 
of the device under optimization. The variants with model 
calculation are based on a mathematical apparatus of high 
complexity. 
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