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Abstract – The present paper proposes and studies the effi-

ciency of using a RSM enhanced ACOR algorithm for the 

optimization of electromagnetic devices. Different RSM 

methods, such as Box-Behnken, CCD and Doelhert, are 

applied to find most suitable parameters (optimal set) for 

the ACOR in order to solve the corresponding electromag-

netic optimization problems. The parameters optimal set is 

found by building a metaheuristic function. In the same 

time, the optimal parameter set is searched and determined 

for each electromagnetic problems for different objective 

functions, the best and the average global best solution for a 

tests set. The electromagnetic devices to be optimized are the 

Loney’s solenoid and an energy storage device, as defined 

by the TEAM22 problem. Both electromagnetic problems 

are proposed benchmarks from electromagnetic community. 
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Box-Behnken, CCD, Doelhert, electromagnetic, TEAM22, sole-

noidul lui Loney. 

Keywords: Evolutionary Computation, Optimization, ACOR, 

RSM, Box-Behnken, CCD, Doelhert, Electromagnetic, 

TEAM22, Loney’s solenoid. 

I. INTRODUCTION 

Proposed in [1] by Dorigo and collaborators, AS (Ant 
System), like any ant algorithm, is an evolutionary algo-
rithm initially designed for hard non-determinist polyno-
mial problems such as QAP [2] [3], TSP [2] [3] [4] or 
MKP [5] [6]. The algorithm simulates the search for food 
behavior by the ant colonies. The process uses the phero-
mone concept, a substance which is secreted by ants on 
theirs search paths for food. 

To improve the performances of the AS algorithm sev-
eral solutions have been proposed in the literature, the 
most effective and known are the ACO (Ant Colony Op-
timization) [3] and the MMAS (Min-Max Ant System) 
[2]. Along with algorithms created for combinatorial prob-
lems, solutions designed for continuous problems were 
proposed, like the ACOR (ACO for real / continuous do-
mains) [7]. 

Just as any other evolutionary computation algorithm, 
the ACOR performance strongly depends by the parame-
ters of the algorithms and, of course, by the optimization 
problem [8]. To find the ACOR set of optimal parameters 
for solving electromagnetic benchmark problems, the pre-
sent paper studies and proposes the possibility of using the 
RSM (Response Surface Methodology) [9]. 

Originally proposed during 1950s in [10] by Box et al. 
the RSM was targeting statistics and design of experi-
ments. The RSM is a set of mathematical and statistical 
techniques sequentially applied to map empirical models 

and / to data, data obtained and provided by experimental 
designs. 

Since proposed, the RSM has been successfully applied 
independently or embedded in other algorithms to solve 
various problems from different domains as computer 
science [4], chemistry [11] or electrical engineering [12] 
[13] [14]. 

In the current study, several RSM models, such as Box-
Behnken [15], CCD (Central Composite Design) [10] and 
Doelhert [16] are applied to improve the ACOR’s perfor-
mances when optimizing electromagnetic devices. The 
performance tuning is done by searching the optimal set of 
parameters for the ACOR. The problems to be solved are 
TEAM22 (Testing Electromagnetic Analysis Method) 
[17] and Loney’s solenoid [18], two benchmarks proposed 
by the electromagnetic community. 

II. THE ACOR ALGORITHM

The ACOR is an ant based algorithm for continuous 
domains proposed by Socha and Dorigo in [7].  

Like any other ACO algorithm, ACOR is population 
based but unlike the other algorithms it stores the phero-
mones table as an archive of solutions (Fig. 1). 

Fig. 1. ACOR archive (size k): solutions sl, fitness values f(sl), weights 

ωl, search space size n, Gaussian kernels Gi i = (1, n). 

The archive is sorted using the fitness values of the so-
lutions (f(sl) < f(sl+1)), where f: Ω ⸦ R

n
 → R represents the

OF (objective function). For each solution there is a 
weight ω related to its fitness measure . 

The weight for a solution sl is calculated as: 

(1) 

where q is a parameter of the ACOR algorithm called the 
locality of the search process and k is the size of the ar-
chive of solutions. When q is small the weights for better 
ranked solutions are bigger, whereas when q is large the 
weights are more uniform. 
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If in the case of PSO and GA, where a particle or an in-
dividual encapsulates a solution, for ACO algorithms an 
ant is a solution builder. To construct a new solution an 
ant starts from a solution l from the archive. The l-th solu-
tion is chosen with a wheel probability mechanism: 

(2) 

The construction of the new solution is performed in n 
steps. At step i the value for the corresponding variable is 
calculated using information which only regards the di-
mension i. The value of the variable is generated random-
ly by a Gaussian distribution: 

(3) 

where μ and σ are the mean and the standard deviation of 
the Gaussian kernel. 

For the evaluation of the parameters the archive of solu-
tions is used as follows:  

(4) 

(5) 

where , the convergence rate, is the fourth ACOR param-
eter, equivalent with the pheromone evaporation from the 
ACO algorithm. If  is smaller the exploitation is domi-
nant comparing to exploration, so the convergence speed 
is faster. 

After a solution set (size equals the number of ants) is 
constructed, the solutions are evaluated, added to the ar-
chive, and sorted according to their fitness values. After-
wards, the worst solutions are removed in order to keep an 
imposed value for the archive of solutions. In the end the 
weights are updated accordingly with the new archive. 

The pseudocode of the ACOR algorithm is [8]: 

;initialize the archive of solutions 

;evaluate the solutions 

;calculate the weights 

do 

foreach ant of the colony 

    ;select a solution l 

    ;construct new solution from (l) 

    ;evaluate the new solution 

end for 

;add the new solutions to archive 

;sort archive according to fitness 

;remove worst solutions keeping  

a previously imposed archive size 

;calculate new weights 

noIterations ++ 

while 

(noIterations < maxNoIterations) 

and 

(optimal solution not found) 

More explanations and details about ACOR are availa-
ble in [7]. 

III. THE RSM ENHANCEMENT

The main idea behind using RSM to enhance the ACOR 
performance is the building of a metaheuristic function g 
with the purpose of finding the optimal set of ACOR pa-

rameters when solving benchmark electromagnetic prob-
lems. The metaheuristic function is quadratic, 
, a choice which proven to offer good results [12] [20] 
when approximating functions with unknown landscapes, 
like in our case:  

(6) 

where np is the number of ACOR parameters, p = [p1, p2, 
… pnp] are the parameters (variables) of the g function,
and c the coefficients. The parameters of g are the scaled 
versions of the ACO parameters (the number of ants, the 
locality of the search process, the size of the archive and 
the convergence speed), whereas the return value corre-
sponding to a point (set of parameters) in the definition 
domain is a measurement of fitness related to the objective 
function of the problem to be solved. 

The optimal set of parameters is found in four steps: 

 A number of points in the parameters space are 
generated using a RSM model, CCD, Box-
Behnken or Doelhert. 

 The evaluation of the metaheuristic g function is 
done for each point performing a set of tests, 
experiments in RSM terms, on the electromag-
netic optimization problem (details in the re-
sults section). 

 The coefficients of the quadratic function are 
calculated by LMS (Least Mean Square) 
method thus obtaining the analytical expres-
sion of g. 

 The optimal set of parameters (considered the 
point at which g is minimum) is determined by 
quadratic optimization applied on the analyti-
cal expression of g. 

The complete algorithm can be summarized as follows: 

;generate the set of points SP 

;    according to the RSM method 

foreach point p in SP 

    ;perform a set of N tests by solving 

    ;    the electromagnetic optimization 

    ;    problem N times using ACOR(p) 

    ;evaluate the performance – g(p) – 

    ;    using statistics 

;calculate the coefficients c by LMS using 

;    the set of points SP and  

;    the corresponding g(p) values 

;find the optimal set of parameters p
*
,

;    which for g(p
*
) = gmin,

;    by quadratic optimization 

;perform a set of N tests for p
*
 by solving

;    the electromagnetic optimization 

;    problem N times using ACOR(p
*
)

;evaluate the performance of p
*

;    using statistics 

A. The FFD model 

In the Full Factorial Design (FFD) for each variable / 
parameter of g there are three possible values: minimum, 
average and maximum. Each parameter value is combined 
with each value of every other parameter, thus the number 
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of points in this model is . Fig. 2 shows the 
placement of the points in the FFD model for np = 3. 

The main drawback of the FFD model appears when 
the number of parameters is high. For such cases, the 
number of experiments needed is prohibitive, and this 
design is therefore not suitable when the evaluation of the 
OF is expensive.  

Fig. 2. The points in the FFD model for np=3.

B. The Box-Behnken model 

The Box-Behnken design [15] resides in the FFD mod-
el. The points are located inside a hypersphere with the 
center at the central point of the design space (Fig. 3).  

In this design each parameter has three possible values 
(-1, 0, 1) scaled respectively to the minimum, average and 
maximum value of the corresponding ACOR parameter. 
The number of points for this design in the case of our 
problems, where np = 4, is 25 (Appendix – Table V). 

Fig. 3. The points in the Box-Behnken model for np=3.

Fig. 4. The points in the CCD model for np=3.

C. The CCD model 

The CCD model [10] consists of a fractional FFD and a 
star design both centered in the central point of the design 
space (Fig. 4). 

In the star design the points are set a distance α from 
the center. Each parameter can have five possible levels (-
α, -1, 0, 1, α). The number of points for this design in the 
case of our problems is 25 (Appendix – Table VI). 

D. The DOELHERT model 

The Doelhert model [16] is the most complex of the 
RSM models used. Each parameter of the design has a 
different number of levels, the distance between levels 
following a uniform distribution. For two parameters the 
design contains six points and is a hexagon whereas for 
three parameters contains twelve points and is a cubocta-
hedron (Fig. 5). 

In our case, with four parameters, the design contains 
21 points with the coordinates shown in the Appendix – 
Table VII. 

Fig. 5. The points in the Doelhert model for np=3.

IV. ELECTROMAGNETIC BENCHMARK PROBLEMS

E. The TEAM22 problem 

Two coaxial coils carry current with opposite directions 
(Fig. 6), operate under superconducting conditions and 
offer the opportunity to store a significant amount of ener-
gy in their magnetic fields, while keeping within certain 
limits the stray field [17]. 

An optimal design of the device should therefore couple 
the value of the energy E to be stored by the system with a 
minimum stray field Bstray. The two objectives are com-
bined into one objective function: 

ref

ref

norm

stray
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(7) 

where Eref = 180 MJ, and Bnorm = 3 μT. 

The objective function has as parameters, the radii (R1, 
R2), the heights (h1, h2) , the thicknesses (d1, d2) and the 
current densities (J1, J2). Besides domain restrictions, the 
problem must take into account the following conditions: 
the solenoids do not overlap each other 
( ), and the superconducting ma-
terial should not violate the quench condition that links 
together the value of the current density and the maximum 
value of magnetic flux density 
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( ). It is a constrain 
imposed to the current densities. 

The evaluation method of the objective function is 
based on the Biot-Savart-Laplace formula in which the 
elliptic integrals are computed by using the King algo-
rithm and numerical integration. Moreover, the optimiza-
tion problem is reformulated as a one with six parameters, 
since for a given geometry and a stored energy, the values 
of the current densities can be computed by deterministic 
quadratic optimization as in [8] [19]. 

 
Fig. 6. TEAM22 problem configuration. 

F. The Loney’s solenoid 

Defined in [18], the Loney's solenoid electromagnetic 
problem has one main and two correction coils with the 
following dimensions (Fig. 7): r1 = 11 mm, r2 = 29 mm, h 
= 120 mm, r3 = 30 mm, r4 = 36 mm. The current density 
through the coils is the same with the goal of having a 
density of the magnetic flux constant in the center of the 
main coil. 

 
Fig. 7. Loney’s solenoid problem configuration. 

 

The objective function to be minimized is (Bmax - 
Bmin)/B0, the difference between the magnetic flux densi-
ties along a segment in the middle of the main solenoid 
divided to the density of the magnetic field in the middle 
of the main coil (r = 0, z = 0). The maximum / minimum 
values of the magnetic flux densities are sought along the 
straight segment [-z0,z0], z0 = 2.5 mm. The optimization 
problem has two parameters the length s and the distance l 
between the correction coils. 

The implementation details of the Loney’s solenoid 
benchmarks is the same as in the previous papers [8] [19]. 

V. RESULTS 

To test the proposed approach two electromagnetic op-
timization problems were chosen, namely TEAM 22 [17] 
and Loney’s solenoid [18]. The implementation details of 
the TEAM 22 and Loney’s solenoid benchmarks are the 
same as in the previous papers [8] [19]. 

For the construction of the metaheuristic function g the 
variation intervals for the ACOR parameters were: the 
number of ants a, integer values between [2; 8], the ar-
chive size k integers between [20; 60], the convergence 
rate  real values between [0.5; 0.99], and the locality of 
the search process q real values between [1E-4; 1E-2]. 

To evaluate the performance for a set of parameters 
(evaluation of the g function) two cases were studied, the 
min-best OF value and the mean-best OF value over a set 
of 30 tests, to make a relevant statistical study. The min-
best is the minimum of the minimum (best) values, and 
the mean-best is the average of the minimum values for 
the mentioned 30 runs. For each test the stopping criteria 
was a maximum number of 2560 OF evaluations, a num-
ber appearing to be sufficient to reach convergence for the 
chosen benchmark problems [8] [19]. 

Tables I-IV present results, the obtained optimal set of 
parameters and the statistical flags for solving the Loney’s 
solenoid and the TEAM22 problems. The statistical flags 
are calculated once again on a set of 30 independent runs. 
The best results previously obtained in [8], where the 
ACOR performance tuning was roughly performed only on 
the number of ants, are presented as comparison. 

For the Loney’s solenoid problem when the objective of 
g is the min-best OF (Table I) the best solution is obtained 
with the Box-Behnken design. The optimal parameters 
provided by the design lean towards exploitation, small 
convergence rate, small archive size, small locality of 
search process all in favor of the better ranked solutions. 
Regarding the value of the OF this is one of the best ever 
reported in the literature. 

When the objective of the metaheuristic function is the 
mean-best OF (Table II) the best RSM design is Doelhert. 
The optimal set of parameters are very high number of 
ants, small archive size and small convergence rate (high 
converge speed) in favor of exploitation and very high 
search process locality parameter in favor of exploration. 
In this case, the set of parameters mentioned in [8] lead to 
a better mean-best. 

For the TEAM 22 problem when the goal of g is min-
best OF once again the best approach is Box-Benhken 
(Table III). The results are once again some of the best in 
the literature in terms of min-best OF. The optimal set of 
parameters are quite different from the parameters provid-
ed by the same design for the Loney’s solenoid. However, 
the parameter values are rather contradictory, very high 
number of ants and small archive size clearly in favor of 
exploitation, very high convergence rate (small conver-
gence speed) and very high locality of the search process 
in favor of exploration. 

Finally, when the objective of the metaheuristic func-
tion is the mean-best OF (Table IV) just like in the case of 
Loney’s solenoid the optimal set of parameters for 
TEAM22 is given by the Doelhert design. The results are 
almost identical with the ones mentioned in [8], in terms 
of mean-best OF and also in terms of parameter values, 
small number of ants, large archive size, high convergence 

main coil correcting coils 

-z0 z0 

r1 r2 r3 r4 

s l s 

h 
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rate and small locality of the search process, clearly ori-
ented towards exploration. 

TABLE I.  
RESULTS FOR LONEY’S SOLENOID PROBLEM, WHEN THE METAHEURISTIC 

OBJECTIVE IS THE MIN-BEST OF 

Method 

CCD 

+ ACOR 

Box-

Behnken 
+ ACOR 

Doelhert 

+ ACOR 
ACOR [8] 

a 2 4 3 4 

k 34 26 60 40 

0.52 0.50 0.99 0.85 

q 10E-3 3.4E-3 9.8E-3 1E-4 

Min - best 

OF value 
3.02E-10 1.24E-10 5.68E-10 2.22E-9 

Max - best 

OF value 
2.8E-6 2.2E-6 2.2E-6 6.10E-8 

Mean - best 

OF value 
6.81E-8 9.53E-8 1.17E-7 1.32E-8 

Standard 
deviation 

3.09E-7 3.29E-7 3.78E-7 9.78E-9 

TABLE II.  
RESULTS FOR LONEY’S SOLENOID PROBLEM, WHEN THE METAHEURISTIC 

OBJECTIVE IS THE MEAN-BEST OF 

Method 

CCD 

+ ACOR 

Box-

Behnken 
+ ACOR 

Doelhert 

+ ACOR 
ACOR [8] 

a 2 2 8 4 

k 20 20 20 40 

0.99 0.99 0.53 0.85 

q 1E-2 1.3E-3 1E-2 1E-4 

Min - best 

OF value 
1.67E-9 1.21E-9 6.92E-9 2.22E-9 

Max - best 
OF value 

5.01E-7 4.00E-7 8.46E-8 6.10E-8 

Mean - best 

OF value 
2.17E-8 2.93E-8 1.61E-8 1.32E-8 

Standard 
deviation 

6.19E-8 7.22E-8 8.36E-9 9.78E-9 

TABLE III. 
RESULTS FOR TEAM22 PROBLEM, WHEN THE METAHEURISTIC 

OBJECTIVE IS THE MIN-BEST OF 

Method 

CCD 

+ ACOR 

Box-
Behnken 

+ ACOR 

Doelhert 

+ ACOR 
ACOR [8] 

a 2 8 2 8 

k 50 20 50 40 

0.75 0.99 0.85 0.85 

q 1E-4 1E-2 3.2E-4 1E-4 

Min - best 

OF value 
2.09E-3 1.93E-3 2.01E-3 2.03E-03 

Max - best 

OF value 
7.20E-3 1.36E-2 6.05E-3 3.52E+00 

Mean - best 

OF value 
2.95E-3 3.33E-3 3.04E-3 1.21E-01 

Standard 

deviation 
1.10E-3 2.09E-3 9.56E-4 6.41E-01 

TABLE IV. 
RESULTS FOR TEAM22 PROBLEM, WHEN THE METAHEURISTIC 

OBJECTIVE IS THE MEAN-BEST OF 

Method 

CCD 
+ ACOR 

Box-

Behnken 

+ ACOR 

Doelhert 
+ ACOR 

ACOR [8] 

a 2 2 2 4 

k 49 60 60 40 

0.5 0.52 0.99 0.85 

q 1E-2 1E-2 1E-4 1E-4 

Min - best 
OF value 

2.31E-3 2.02E-3 2.31E-3 2.15E-03 

Max - best 

OF value 
3.78E-2 1.14E-2 4.96E-3 5.99E-03 

Mean - best 
OF value 

6.37E-3 3.73E-3 3.03E-3 2.97E-03 

Standard 

deviation 
6.63E-3 1.97E-3 5.82E-4 8.03E-04 

TABLE V. 

PARAMETER VALUES FOR THE BOX-BEHNKEN METHOD 

p1 p2 p3 p4 

1 -1 -1 0 0 

2 -1 1 0 0 

3 -1 0 0 -1 

4 -1 0 0 1 

5 -1 0 -1 0 

6 -1 0 1 0 

7 0 0 -1 -1 

8 0 0 -1 1 

9 0 0 1 -1 

10 0 0 1 1 

11 0 -1 -1 0 

12 0 -1 1 0 

13 0 1 -1 0 

14 0 1 1 0 

15 0 -1 0 -1 

16 0 -1 0 1 

17 0 1 0 -1 

18 0 1 0 1 

19 0 0 0 0 

20 1 -1 0 0 

21 1 1 0 0 

22 1 0 0 -1 

23 1 0 0 1 

24 1 0 -1 0 

25 1 0 1 0 

TABLE VI. 

PARAMETER VALUES FOR THE CCD METHOD 

p1 p2 p3 p4 

1 -2 0 0 0 

2 -1 -1 -1 -1 

3 -1 -1 -1 1 
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4 -1 -1 1 -1 

5 -1 -1 1 1 

6 -1 1 -1 -1 

7 -1 1 -1 1 

8 -1 1 1 -1 

9 -1 1 1 1 

10 0 -2 0 0 

11 0 2 0 0 

12 0 0 -2 0 

13 0 0 2 0 

14 0 0 0 -2 

15 0 0 0 2 

16 0 0 0 0 

17 1 -1 -1 -1 

18 1 -1 -1 1 

19 1 -1 1 -1 

20 1 -1 1 1 

21 1 1 -1 -1 

22 1 1 -1 1 

23 1 1 1 -1 

24 1 1 1 1 

25 2 0 0 0 

TABLE VII. 

PARAMETER VALUES FOR THE DOELHERT METHOD 

 p1 p2 p3 p4 

1 -1 0 0 0 

2 -0.5 -0.86603 0 0 

3 -0.5 -0.28868 -0.8165 0 

4 -0.5 -0.28868 -0.20412 -0.79057 

5 -0.5 0.866025 0 0 

6 -0.5 0.288675 0.816497 0 

7 -0.5 0.288675 0.204124 0.790569 

8 0 0 0 0 

9 0 0.57735 -0.8165 0 

10 0 0.57735 -0.20412 -0.79057 

11 0 -0.57735 0.816497 0 

12 0 0 0.612372 -0.79057 

13 0 -0.57735 0.204124 0.790569 

14 0 0 -0.61237 0.790569 

15 0.5 0.866025 0 0 

16 0.5 0.288675 0.816497 0 

17 0.5 0.288675 0.204124 0.790569 

18 0.5 -0.86603 0 0 

19 0.5 -0.28868 -0.8165 0 

20 0.5 -0.28868 -0.20412 -0.79057 

21 1 0 0 0 

 

VI. CONCLUSIONS 

Following the proposal from [21], the present paper 
studied the effectiveness of improving the performance of 
the ACOR evolutionary algorithm by using RSM strategies 
for solving electromagnetic benchmark problems. To test 

and verify the proposed enhancement two electromagnetic 
benchmarks were chosen, namely TEAM22 and Loney’s 
solenoid. 

The enhancement is performed by searching the opti-
mal set of ACOR parameters. To achieve this goal a me-
taheuristic quadratic function in the parameters space is 
constructed using RSM methods, namely CCD, Box-
Behnken and Doelhert. For the evaluation of the metaheu-
ristic function two different objectives were studied: the 
minimum best (min-best) value and the average best 
(mean-best) value of the original OF over a statistical set 
of tests. 

The results obtained with the proposed approach were 
compared to previously obtained results from [8], where 
the ACOR ‘s performance was tunned roughly, only on 
one parameter namely the ants number.  

When the objective of the metaheuristic function is the 
min-best value of the original OF the Box-Behnken design 
generates the best set of optimal parameters from all the 
design strategies for both electromagnetic benchmarks. 
The values obtained for the OF are from author’s 
knowledge some of the best found in the literature for 
TEAM22 and also Loney’s solenoid. 

When the objective of the metaheuristic function is the 
mean-best value of the original OF the Doelhert design is 
the most suitable for both electromagnetic problems. 
However, the obtained results are comparable with results 
obtained in [8] in the case of TEAM22 and a little poorer 
than the results in [8] in the case of Loney’s solenoid.  
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